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Jamming in complex gradient networks
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Flows of physical quantities in large complex networks, natural or man made, rely in general on some scalar

gradients existing in the networks. We investigate, analytically and numerically, under what conditions jam-
ming in gradient flows can occur in random and scale-free networks. We find that the degree of jamming
typically increases with the average connectivity (k) of the network. A crossover phenomenon is uncovered
where for (k)<k. (k. denotes a critical connectivity, estimated to be about 10), scale-free networks have a
higher level of congestion than random networks with the same (k), while the opposite occurs for (k)> k..
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Studies of complex networks have attracted a great deal
of interest since the discoveries of the small-world [1] and
scale-free [2,3] properties in many natural and man-made
networks [4-7]. In complex networks such as the Internet,
the network of financial trades, the neuronal system, the
power grid, metabolic network, etc., the flow properties of
the transported entities (such as information, energy, chemi-
cals, etc.) become of primary interest. In particular, flow con-
gestion, or jamming, and its dynamical relation to network
structure has become a topic of recent investigation [8,9].
The detailed mechanism for traffic flow varies from case to
case, depending on the particular process in the network un-
der consideration. For instance, in a neural network, flow of
information is accomplished by the propagation and firing of
electrical pulses. In the Internet, digital information flows
according to a set of computer instructions. In a social net-
work, rumor propagates along the routes established based
on personal and/or professional relationships among indi-
viduals in the network. To be able to consider various net-
works in a general framework, it is reasonable to hypothesize
the existence of a gradient field that governs the information
flow on the network.

Recently, in Ref. [8], a general framework was established
considering gradients generated flows, and the problem of
jamming in the network was addressed [8,9]. In this frame-
work, each node in the network is assigned a random weight,
and the transport process is guided by the local gradients at
nodes. Their finding is that random networks are more sus-
ceptible to jamming than scale-free networks. This observa-
tion was based on comparing the evolution of the jamming
coefficient for the network growth processes, in which new
nodes are added to an existing network according to some
stochastic rules. In particular, for growing binomial random
graphs, the same coefficient goes to the value of maximal
congestion with increasing network size, N. The reason for
this lies in the fact that the congestion factor depends on only
two-step neighborhoods of the nodes [9], and in particular it
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is determined mainly by the average degree (k) of the nodes
[9]. Since for the scale-free networks with degree exponents
larger than 2, (k) becomes independent of N, the congestion
does not grow with N, whereas for growing random graphs,
(k) grows linearly with N leading to maximal jamming. In
most realistic scale-free networks documented so far [4-7],
the average connectivity is small (less than 10). An interest-
ing issue, then, concerns the jamming properties of random
and scale-free networks with same parameters (k) and N.
Notice that a random network with (k) values comparable to
those in realistic scale-free networks can be generated, for
instance, by the binomial model [5] or by rewiring the links
in a sparse, regular network, as suggested by Watts and Stro-
gatz [1].

In this Rapid Communication, we report results from a
systematic study of the jamming problem in gradient net-
works. We consider three different types of networks (regu-
lar, random, and scale-free) and focus on how the average
connectivity affects the degree of jamming. For a class of
regular networks, the degree of jamming can be calculated
analytically. For random and scale-free networks, we are able
to obtain approximate estimates for the degree of jamming.
Our main finding is that there exists a critical connectivity
parameter k. below which ((k) <k,) the level of the jamming
in a scale-free network is higher than for a random graph
with the same (k) and N; however, above k. the opposite
occurs. The numerically estimated value of k. is about 10,
which is larger than the values in most scale-free networks
studied. The conclusion is then that in realistic situations the
level of jamming is higher in scale-free networks than in
randomlike graphs with the same average connectivity and
size.

Given a network of N nodes, a gradient field can be con-
veniently established by making the network weighted, as
follows. We begin by assigning a random weight w; (drawn
from a uniform distribution in [0, 1]) to each node in the
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network. For node i, we examine all its neighboring nodes
(including itself) and identify a node j that has the largest
weight. This enables a directed link to be specified from
node i to j. A self-linked loop is possible if i has the largest
weight among all its neighbors. A gradient network can then
be defined as the collection of all directed links [8,9]. Re-
gardless of the nature of the network, e.g., regular, random,
or scale-free, the way by which the gradient is established
stipulates that there be no loops in the network except self
loops. We assume that at a given time, a certain amount of
information is generated in the network (e.g., data packets in
a computer network) and flows along the direction of the
links under the gradient field. Let Ny g and N .. be the
number of nodes sending and receiving information at a cer-
tain instant, respectively. Then, in the case when a node re-
ceives a packet from exactly one other node, i.e., Nyeceive
=N,eng> NO information is delayed in the network and there is
thus no jamming. Jamming (or queue formation) occurs
when N .cive <Ngeng- The following jamming factor J can
thus be defined to measure the degree of jamming [8]

=1- <<Nreceive/Nsend>w>network = R(O) > (1)

where (---),, and {***).work denote the statistical average
over realizations of the set of weights and the network con-
figuration, respectively. Note that a node requires at least one
outgoing link to send information and at least one incoming
link to receive information. In the definition (1), R(0) is the
probability that a randomly selected node has no incoming
link [8,9], which can be calculated numerically. Apparently,
J=0 corresponds to free traffic on the network without jam-
ming, and J=1 indicates the worst case of jamming, where a
negligible number of nodes are processing the flow of the
rest.

To analyze and understand the degree of jamming for ran-
dom networks, we start from the simpler case of a one-
dimensional regular network on a ring, where each node has
two neighbors and there is one link between any two neigh-
boring nodes, i.e., (k)=2. A small-world network can be ob-
tained by rewiring a few links [1]. Rewiring all existing links
leads to a completely random network. In general, random
networks with large (k) values can be generated by the bino-
mial model [5], where each pair of nodes is linked with
probability R=(k)/N. To generate a scale-free network with
(ky=2, we use the standard BA model [2,3]. First consider
the regular network. For two neighboring nodes A and B, the
direction of the (gradient) link can be from A to B or from B
to A. There can also be a self loop at A or B. A link may also
disappear with respect to the gradient field. We say a node
has an incoming link if there is a gradient link pointing to it.
Given node i, there are five possible cases where it has no
incoming link, as shown in Fig. 1. Consider the first case
shown in Fig. 1(a). This occurs for w;<w;_; <wj,,, the prob-
ability of which is P(,=1/6. The case shown in Fig. 1(b)
happens for w;<w;,;<w,_; and we have Pg)=1/6. Simi-
larly, the case shown in Fig. 1(c) occurs for w;_;<w;
<Wip <wj_p or wi_ <w;<w,_, <w;,; Where, although w; is
larger than w,_;, w;_, is greater than w; and thus the link
between i and i—1 disappears in the gradient network. We
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FIG. 1. For the one-dimensional regular network with (k)=2, all
possible cases for node i to have no incoming links.

thus have P =1/4!+1/4!=1/12. The case shown in Fig.
1(d) is for wi, <w;<w,_; <wn O Wi <w; <wi <wi_j,
giving P(;=1/12. The situation shown in Fig. 1(e) arises
when the random weights satisfy one of the following con-
ditions: Wi <wi_ 1 <w;<Wir< Wi, Wi <wi_ <w;
SWipa <Wigy Wi g SWipp SWi<SWi o <Wipg, Wi <Wi <w;
<wia<w;,. We get P,=1/5!+1/5!+1/5!+1/5!=1/30.
The jamming factor is thus given by J=P,)+Py)+P(,
+Py+Py=8/15=0.533. In fact, for the one-dimensional
Kth power of a ring, it is possible to obtain the analytic
dependence of the jamming factor on the connectivity (k)
=2K [10]. By using recursive integrals [9] it can be shown
that the jamming will increase with increasing average de-
gree, as J=1-2/(k) [10].

To estimate, for a random or scale-free network, the prob-
ability P that a randomly chosen node has no incoming gra-
dient links, we consider a number of local structures of the
network containing the chosen node (drawn as a solid circle
in Fig. 2). Figure 2 shows only 16 local structures among
many other ones, where all nearest-neighbor nodes of the
chosen node have links less than or equal to 4. In this figure,
diamonds and open circles mean a node with more than one
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FIG. 2. All possible cases for a selected node (solid circle) to
have no incoming links. Diamonds denote nodes with more than
one link.
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TABLE 1. Value of jamming factor when 0%, 20%,...,80% of
links in the regular network with (k)=2 are rewired. The total num-
ber of nodes is N=10 000.

% 0 20 40 60 80

J 0.5332 0.5498 0.5631 0.5677 0.5770

link and a node with only one link, respectively. For making
the estimate, we only present treelike local configurations,
with no loops. This will give an estimate to a lower bound
for P, since the existence of loops will further increase its
value. For example, in Fig. 2(e) the value of P for the con-
figuration is 1/3, while the triangular configuration formed
from this by connecting the two empty circles with a link has
P=2/3. Since the probability for two empty circles to be
connected is {(k)/N, the small increase in P is about (k)/3N
for the triangular configuration, which does not affect our
conclusion. The probabilities for the cases shown in Figs.
2(a)-2(1) are given by P(a)=%, P(b)=%+é, P(C)=%+i, P
=3+75, Py=5s P(y=3+15 X2, P()=0.3668, P(;,=0.4335,
P(i)=l/4, PU):03997, P(k)2045079 and P(Z):OSZZO, re-
spectively. The probabilities for all other structures can be
calculated in a similar fashion (not shown). In general, P
increases with the connectivity of the nearest neighbors of
the selected node and the probability that a node with zero or
one link has no incoming gradient link is rather large, close
unity. By the rewiring process in regular network with (k)
=2, some nodes lose one or two links but some other nodes
gain links. Both cases lead in average to the increase of P.
Thus we expect that the random network to have larger jam-
ming factor than the regular network. In Table I, we list the
numerical values of the jamming factor as the network be-
comes more random.

To obtain the jamming factor for networks with small
values of the average connectivity (say (k)< 10), it is neces-
sary to measure the probabilities for a randomly selected
node to have no incoming gradient links, for cases where the
chosen node has degree one, two, or three on the substrate
network. The results for (k)=2 and N=10 000 are summa-
rized in Table II, where the random network was generated
by the binomial model [5].

With the information provided in Table II, we can now
estimate the jamming factor J for random network. If a se-

TABLE II. The probabilities for each node to have degree one,
two, three, etc., in the random network and SF network with system
size L=10000 and average connectivity (k)=2.

The number of link Random network SF network
0 0.1511 0.0
1 0.2509 0.6713
2 0.2619 0.1631
3 0.1794 0.0674
4 0.0969 0.0307
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lected node has only one link, as shown in Figs. 2(a)-2(d),
the jamming factor J(1), where J(I) means the probability for
a node with / links to have no incoming link in the network,
is given by

J(1) = {Pr(D[3Pp(1) + (3 + DPR(2) + (5 + D) Pr(3) + (55

+3)Pg(4) 1> Pr(1)Qx(1), (2)
where
Or(1) = % + éﬁR(z) + i[l - ﬁR(l) - ﬁR(z) - ﬁR(3)]
=~ (0.6596,

Pg(0) is the probability for a node m to have I links, Pg(l)
=Pr()/[1-Pg(0)], and the normalization condition 1
=Pr(1)+Pg(2)+Pg(3)+Pg(4)+- - is used. Similar calcula-
tions yield J(2) = Pr(2)Qx(2) and J(3) = Px(3)Qx(3), where
Qr(2)=0.4804 and Qg(3) =~ 0.3937. We numerically observe
that about 84% of nodes have less than four links. For [=4,
it is reasonable to assume that the probability for a selected
node to have no incoming link is about 0.4. Then, we obtain
Jr=J(0)+J(1)+J(2)+J(3)+0.1567 X 0.4 =0.5748.

For scale-free network, which is generated by the BA
model [2,3] of the same parameters, (k) and N, the jamming
factor is given by

J(1) ={Pgp(1)[3 X 0+ (% + 2)Pgp(2) + (5 + 3)Psx(3)

+ (35 + 3)Psp@) + - 1 > Pgp(1)Qgp(1), (3)
where
Osr(1) = % + éﬁSF(z) + iﬁSF(?’) + %[1 - Pg(2) - Pgr(3)]
= (.7236,

Pgi(l) is the probability for a node m to have [ links in the

scale-free network, and ISSF(Z)=PSF(Z)/[1—PSF(I)]. For a
scale-free network, nodes connected to a node with only one
link typically have more than one link. Thus we have
Pgr(1)=0. Similarly, we have J(2)= P¢(2)Qs(2) and J(3)
~Pgr(3)Qsp(3), where Qgr(2)~0.4080 and Qgx(3)
~(.3211. We observe that in the scale-free network, about
90% of nodes have less than four links. We also observe
numerically that the probability that more than 99% of the
nodes have no incoming links is slightly greater than 0.2,
which can be taken as a conservative estimate of the prob-
ability that a selected node has no incoming link. We thus

obtain, for a scale-free network,
Jop=J1)+J(2) +J(3) +0.0982 X 0.2 = 0.5936 > J;. (4)

Our estimates thus show that for random and scale-free
network with same values of (k) (small) and N, the jamming
factor for the latter is somewhat higher, indicating that scale-
free networks have a higher level of congestion. In fact, for
(ky=2, the nearest neighbors of the selected node generally
have more types of links in scale-free network than in a
random network. Thus, we expect the actual value of AJ
= Jgr—Jp to be larger than our heuristic estimate above. That
is, our estimate of the value of AJ is only a lower bound for
the actual value, thereby strengthening our main result that
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FIG. 3. AJ=Js—Jy between scale-free and random network of
10 000 nodes vs (k) for 2=<(k)=<?200. Inset: AJ for 2 =< (k)<<25.

the level of jamming is larger in gradient scale-free net-
works. Indeed, for (k)=2 and N=10 000, our direct numeri-
cal computations give Jg»=~0.6830 and Jz~=0.6519.

What about the relative values of the jamming factor for
random and scale-free networks in the case of large average
connectivity (k)? In this case, we observe numerically (e.g.,
for (k)=60 and N=10 000), more than 90% of nodes in the
network have no incoming links. When the neighboring
nodes of a chosen node have larger connectivities, the prob-
ability for the chosen node to have no incoming links is also
larger. In a scale-free network, large connectivity tends to
focus on a small set of nodes, in contrast to a random net-
work where nodes with relatively large connectivity are dis-
tributed more uniformly. Thus, comparing with scale-free
networks, nodes in random networks have more neighbors
with large values of k. Another factor is that Qu((k)/2) has
smaller value than Qg({(k)/2) for not so small (k) (e.g., for
(ky>10). Thus, intuitively, a random network can have
larger jamming factor comparing to a scale-free network
with identical values of (k) (large) and N. Numerical compu-
tation indeed provides evidence supporting this intuition, as
shown in Fig. 3; the difference AJ as a function of the aver-
age connectivity (k) for 2=<(k)<200 (the inset shows the
same plot but for 2 < (k) <25). We see that AJ is positive for
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small (k) but it is negative for large (k) values, and a cross-
over occurs for a critical value (k).= 10.

Recently two models for traffic congestion on complex
networks have been reported [11]. In these models the capac-
ity of packet delivery of each node is given by 8B, where 3
is a capacity parameter. In the first model B is the number of
links of a node, while in the second model B is the number of
shortest path passing through a node. It was found that in the
first model scale-free networks are more jammed than ran-
dom networks with the same size and the average connectiv-
ity. But in the second model, scale-free networks are less
jammed than random networks for large values of 8. In gen-
eral, the dynamics of traffic flow on complex networks are
affected by various factors such as gradient flow, capacity of
a node for packet delivery, and the network structure, etc. In
a complex network, the failure of a few nodes may have
some serious effects. For instance, disintegration of the net-
work may result from the process of cascading failures [12].
How gradient flows on complex networks are affected by
failures of a small number of nodes (e.g., as caused by in-
tentional attacks) is an interesting but open question.

In summary, our analytic estimates and numerical compu-
tations of the jamming factor for information flow in gradient
networks suggest that the average network connectivity plays
an important role in determining the susceptibility of scale-
free networks to jamming as compared with random net-
works. For networks where the average connectivity is small,
scale-free networks are more prone to jamming than random
networks with the same average connectivity. Since most
realistic networks have connectivities that fall in our “small”
regime, our result should be relevant. To ensure free infor-
mation flow in complex networks is important and of broad
interest to a variety of disciplines. We hope our results here
can be useful for understanding how jamming occurs and for
devising strategies to minimize jamming in complex net-
works.
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